论文标题
使用概率深度学习改善季节性预测
Improving seasonal forecast using probabilistic deep learning
论文作者
论文摘要
实现季节性预测及其社会经济益处的潜力的途径在很大程度上取决于改善基于一般循环模型的动力学预测系统。为了改善动态季节性预测,建立预测基准并阐明模型初始化误差,配方缺陷和内部气候变异性提出的预测限制至关重要。产生大型预测合奏的成本巨大,并且对预测验证的观察有限,季节性预测基准测试和诊断任务证明了具有挑战性。在这项研究中,我们开发了概率的深神经网络模型,借鉴了大量现有的气候模拟,以增强季节性预测能力和预测诊断。通过利用在气候模拟中编码的复杂物理关系,我们的概率预测模型与在准 - 全球季节性降水和近乎表面温度的最新动力学预测中相比,与最新的动力学预测系统相比,表现出了有利的确定性和概率技能。我们应用这种概率预测方法来量化初始化误差和模型配方在动态季节性预测系统中的影响。我们介绍了显着分析方法,以有效地识别影响季节性变异性的关键预测因子。此外,通过使用变异贝叶斯对不确定性进行明确建模,我们对El Nino/Southern振荡的方式给出了更确定的答案,即季节性变异性的主要模式,可调节全球季节性可预测性。
The path toward realizing the potential of seasonal forecasting and its socioeconomic benefits depends heavily on improving general circulation model based dynamical forecasting systems. To improve dynamical seasonal forecast, it is crucial to set up forecast benchmarks, and clarify forecast limitations posed by model initialization errors, formulation deficiencies, and internal climate variability. With huge cost in generating large forecast ensembles, and limited observations for forecast verification, the seasonal forecast benchmarking and diagnosing task proves challenging. In this study, we develop a probabilistic deep neural network model, drawing on a wealth of existing climate simulations to enhance seasonal forecast capability and forecast diagnosis. By leveraging complex physical relationships encoded in climate simulations, our probabilistic forecast model demonstrates favorable deterministic and probabilistic skill compared to state-of-the-art dynamical forecast systems in quasi-global seasonal forecast of precipitation and near-surface temperature. We apply this probabilistic forecast methodology to quantify the impacts of initialization errors and model formulation deficiencies in a dynamical seasonal forecasting system. We introduce the saliency analysis approach to efficiently identify the key predictors that influence seasonal variability. Furthermore, by explicitly modeling uncertainty using variational Bayes, we give a more definitive answer to how the El Nino/Southern Oscillation, the dominant mode of seasonal variability, modulates global seasonal predictability.