论文标题
双线性动态模式分解量子控制
Bilinear dynamic mode decomposition for quantum control
论文作者
论文摘要
使用针对特定量子动态系统和所需控制目标的时间依赖性控制脉冲来建立量子最佳控制(QOC)的数据驱动方法对于许多新兴的量子技术至关重要。我们开发了数据驱动的回归过程,双线性动态模式分解(BIDMD),该过程利用时间序列测量来建立QOC的量子系统识别。 BIDMD优化框架是一种物理信息的回归,可利用已知的基础汉密尔顿结构。此外,可以对BIDMD进行修改,以模拟控制信号的快速和缓慢采样,后者通过频道采样策略进行了模拟。 BIDMD方法为实时的在线实现提供了灵活,可解释和自适应回归框架。此外,该方法与Koopman理论具有牢固的理论联系,该理论与线性操作员近似非线性动力学。与许多机器学习范式相比,它需要最小的数据,并且随着新数据的收集,BIDMD模型很容易更新。我们证明了该方法对许多代表性量子系统的功效和性能,这表明它也与实验结果相匹配。
Data-driven methods for establishing quantum optimal control (QOC) using time-dependent control pulses tailored to specific quantum dynamical systems and desired control objectives are critical for many emerging quantum technologies. We develop a data-driven regression procedure, bilinear dynamic mode decomposition (biDMD), that leverages time-series measurements to establish quantum system identification for QOC. The biDMD optimization framework is a physics-informed regression that makes use of the known underlying Hamiltonian structure. Further, the biDMD can be modified to model both fast and slow sampling of control signals, the latter by way of stroboscopic sampling strategies. The biDMD method provides a flexible, interpretable, and adaptive regression framework for real-time, online implementation in quantum systems. Further, the method has strong theoretical connections to Koopman theory, which approximates non-linear dynamics with linear operators. In comparison with many machine learning paradigms, it requires minimal data and the biDMD model is easily updated as new data is collected. We demonstrate the efficacy and performance of the approach on a number of representative quantum systems, showing that it also matches experimental results.