论文标题
深度概率成像:计算成像的不确定性定量和多模式溶液表征
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging
论文作者
论文摘要
计算图像重建算法通常会产生单个图像,而无需任何不确定性或置信度。正则最大似然(RML)和馈送深度学习方法的反问题通常集中于恢复点估计值。在使用不确定的成像系统时,这是一个严重的限制,可以想象多个图像模式与测量数据一致。因此,表征可能解释观测数据的可能图像的空间至关重要。在本文中,我们提出了一种差异概率成像方法来量化重建不确定性。深概率成像(DPI)采用未经训练的深生成模型来估计未观察到的图像的后验分布。这种方法不需要任何培训数据;相反,它优化了神经网络的权重,以生成适合特定测量数据集的图像样本。一旦学习了网络权重,就可以有效地采样后验分布。我们在干涉无线电成像的背景下演示了这种方法,该方法用于与事件范围望远镜的黑洞成像以及压缩感测磁共振成像(MRI)。
Computational image reconstruction algorithms generally produce a single image without any measure of uncertainty or confidence. Regularized Maximum Likelihood (RML) and feed-forward deep learning approaches for inverse problems typically focus on recovering a point estimate. This is a serious limitation when working with underdetermined imaging systems, where it is conceivable that multiple image modes would be consistent with the measured data. Characterizing the space of probable images that explain the observational data is therefore crucial. In this paper, we propose a variational deep probabilistic imaging approach to quantify reconstruction uncertainty. Deep Probabilistic Imaging (DPI) employs an untrained deep generative model to estimate a posterior distribution of an unobserved image. This approach does not require any training data; instead, it optimizes the weights of a neural network to generate image samples that fit a particular measurement dataset. Once the network weights have been learned, the posterior distribution can be efficiently sampled. We demonstrate this approach in the context of interferometric radio imaging, which is used for black hole imaging with the Event Horizon Telescope, and compressed sensing Magnetic Resonance Imaging (MRI).