论文标题
对CAT(0)立方体复合物的相对几何作用
Relatively geometric actions on CAT(0) cube complexes
论文作者
论文摘要
我们开发了相对双曲基团对CAT(0)立方体复合物的相对几何作用理论的基础,这是我们以前的工作中提出的这一概念[5]。在相对几何环境中,我们证明:完全相对的准凸子组值是CONVEX COMPACT; Agol定理的类似物;以及Haglund的版本 - Wise的规范完成和缩回。
We develop the foundations of the theory of relatively geometric actions of relatively hyperbolic groups on CAT(0) cube complexes, a notion introduced in our previous work [5]. In the relatively geometric setting we prove: full relatively quasi-convex subgroups are convex compact; an analog of Agol's Theorem; and a version of Haglund--Wise's Canonical Completion and Retraction.