论文标题
仔细观察宇宙中最具发光的类星体
A Closer Look at Two of the Most Luminous Quasars in the Universe
论文作者
论文摘要
超光泽的类星体($ M_ {1450} \ leq -29 $)为我们提供了最罕见的视图,可以欣赏到最庞大,最迅速的超级质量黑洞(SMBHS)的本质。在发现了其中两个极端来源之后,J0341 $ {+} $ 1720($ M_ {1450} = - 29.56 $,$ z = 3.71 $)和J2125 $ { - } $ 1719($ M_ {1450} = -29.39 $,$ Z = 3.90 $),ELS和ERS的调查Pan-Starrs \,1脚印(PS-ELQS),我们在本文中对它们的休息框紫外线进行了光谱。两种类星体都非常庞大的Smbhs,带有$ M _ {\ rm {bh}} = 6.73 _ { - 0.83}^{+0.75} \ 0.75} \ times10^{9} {9} \,m _ {\ odot} $ $ m _ {\ rm {bh}} = 5.45 _ { - 0.55}^{+0.60} \ times10^{9} {9} \,m _ {\ odot} $ ($ l _ {\ rm {bol}}/l _ {\ rm {edd}} = 2.74 _ { - 0.27}^{+0.39} $ and $ l _ {\ rm {bol}}/l _ {\ rm {edd}} = 3.01 _ { - 0.30}^{+0.34} $)。 NOEMA 3毫米的J0341 $ {+} $ 1720 $ 1720揭示了高度的星形形成($ \ rm {sfr} \ oft1500 \,m _ {\ odot} \,\ rm {\ rm {yr} ($ l _ {\ rm {tir}} \ act1.0 \ times10^{13} \,l _ {\ odot} $)主机,基于其动态质量的估计,仅是$ {\ sim}的30 $ $比SMBH IT在其中心位于其中心。作为发光的超级伊德丁顿积聚的例子,这两个类星体为理论提供了支持,这解释了大爆炸后的数百万美元$ {\ sim} 700 $ {\ sim}在大型超级超级伊德丁顿在标准SMBH种子中增长的700万年。
Ultra-luminous quasars ($M_{1450} \leq -29$) provide us with a rare view into the nature of the most massive and most rapidly accreting supermassive black holes (SMBHs). Following the discovery of two of these extreme sources, J0341${+}$1720 ($M_{1450}=-29.56$, $z=3.71$) and J2125${-}$1719 ($M_{1450}=-29.39$, $z=3.90$), in the Extremely Luminous Quasar Survey (ELQS) and its extension to the Pan-STARRS\,1 footprint (PS-ELQS), we herein present an analysis of their rest-frame UV to optical spectroscopy. Both quasars harbor very massive SMBHs with $M_{\rm{BH}}=6.73_{-0.83}^{+0.75}\times10^{9}\,M_{\odot}$ and $M_{\rm{BH}}=5.45_{-0.55}^{+0.60}\times10^{9}\,M_{\odot}$, respectively, showing evidence of accretion above the Eddington limit ($L_{\rm{bol}}/L_{\rm{Edd}}=2.74_{-0.27}^{+0.39}$ and $L_{\rm{bol}}/L_{\rm{Edd}}=3.01_{-0.30}^{+0.34}$). NOEMA 3 millimeter observations of J0341${+}$1720 reveal a highly star-forming ($\rm{SFR}\approx1500\,M_{\odot}\,\rm{yr}^{-1}$), ultra-luminous infrared galaxy ($L_{\rm{TIR}}\approx1.0\times10^{13}\,L_{\odot}$) host, which, based on an estimate of its dynamical mass, is only ${\sim}30$ times more massive than the SMBH it harbors at its center. As examples of luminous super-Eddington accretion, these two quasars provide support for theories, which explain the existence of billion solar mass SMBHs ${\sim}700$ million years after the Big Bang by moderate super-Eddington growth from standard SMBH seeds.