论文标题
在线性复发序列上确定$ω$ - 惯性属性
Deciding $ω$-Regular Properties on Linear Recurrence Sequences
论文作者
论文摘要
我们考虑了在线性循环产生的无限轨迹上确定$ω$ regormard属性的问题。在这里,我们认为一个给定的循环是产生单个无限轨迹,该跟踪在每个时间步骤中编码有关程序变量的迹象的信息。正式地,我们的主要结果是一个程序,该过程输入了前缀独立于$ω$的属性属性和一系列数字满足线性复发的序列,并确定序列是否符号描述(通过用“ $+$”替换每个正面条目,用“ $+$”替换每个负面条目,每个负面条目都以“ $ - $”和“ $ 0 $ 0 $ 0 $ $ $”的属性满足“ $ 0 $”的属性。我们的过程要求复发很简单,\ ie,基础循环的更新矩阵是可对角线的。这个假设对证明我们的关键技术引理起来重要:即,在Muchnik,Semënov和Ushakov的意义上,简单的线性复发顺序的符号描述几乎是周期性的。为了补充这种引理,我们举了一个线性复发序列的示例,其符号描述几乎是周期性的。从符号描述中概括,我们还考虑了涉及程序变量的半代数谓词的属性的验证。
We consider the problem of deciding $ω$-regular properties on infinite traces produced by linear loops. Here we think of a given loop as producing a single infinite trace that encodes information about the signs of program variables at each time step. Formally, our main result is a procedure that inputs a prefix-independent $ω$-regular property and a sequence of numbers satisfying a linear recurrence, and determines whether the sign description of the sequence (obtained by replacing each positive entry with "$+$", each negative entry with "$-$", and each zero entry with "$0$") satisfies the given property. Our procedure requires that the recurrence be simple, \ie, that the update matrix of the underlying loop be diagonalisable. This assumption is instrumental in proving our key technical lemma: namely that the sign description of a simple linear recurrence sequence is almost periodic in the sense of Muchnik, Semënov, and Ushakov. To complement this lemma, we give an example of a linear recurrence sequence whose sign description fails to be almost periodic. Generalising from sign descriptions, we also consider the verification of properties involving semi-algebraic predicates on program variables.