论文标题
可解释联盟情境理解的实验平台
An Experimentation Platform for Explainable Coalition Situational Understanding
论文作者
论文摘要
我们提出了一个实验平台,用于联盟情境理解研究,该平台突出了可解释的人工智能/机器学习(AI/ML)的能力,以及符号和下符号AI/ML的符号和符合事件处理方法的整合。情境理解探索者(SUE)平台旨在轻巧,轻松促进实验和演示,并开放。我们讨论了我们的要求,以支持联盟多域运营,重点是在茂密的城市地形环境中进行资产互操作性和临时人机团队。我们描述了界面功能,并将SUE应用于联盟情境理解任务。
We present an experimentation platform for coalition situational understanding research that highlights capabilities in explainable artificial intelligence/machine learning (AI/ML) and integration of symbolic and subsymbolic AI/ML approaches for event processing. The Situational Understanding Explorer (SUE) platform is designed to be lightweight, to easily facilitate experiments and demonstrations, and open. We discuss our requirements to support coalition multi-domain operations with emphasis on asset interoperability and ad hoc human-machine teaming in a dense urban terrain setting. We describe the interface functionality and give examples of SUE applied to coalition situational understanding tasks.