论文标题
数据驱动的稀疏多项式混乱扩展方法,用于评估具有可再生能源的电力系统的概率总传输能力
A Data-Driven Sparse Polynomial Chaos Expansion Method to Assess Probabilistic Total Transfer Capability for Power Systems with Renewables
论文作者
论文摘要
可再生能源(RES)和老化传输网络引起的不确定性水平的提高在评估总传输能力(TTC)和可用传输能力(ATC)方面构成了巨大挑战。在本文中,提出了一种新型的数据驱动的稀疏多项式混乱扩展(DDSPCE)方法,用于估计概率TTC(PTTC)的概率特征(例如,平均值,方差,概率分布)。具体而言,提出的方法不需要随机输入的预先提出的概率分布,它直接利用数据集来估计PTTC。此外,集成了稀疏方案以提高计算效率。对修改的IEEE 118-BUS系统的数值研究表明,提出的DDSPCE方法可以以高效率来实现PTTC概率特征的准确估计。此外,数值结果揭示了在PTTC和ATC评估中纳入离散随机输入的重要性,尽管如此,这些输入尚未得到足够的关注。
The increasing uncertainty level caused by growing renewable energy sources (RES) and aging transmission networks poses a great challenge in the assessment of total transfer capability (TTC) and available transfer capability (ATC). In this paper, a novel data-driven sparse polynomial chaos expansion (DDSPCE) method is proposed for estimating the probabilistic characteristics (e.g., mean, variance, probability distribution) of probabilistic TTC (PTTC). Specifically, the proposed method, requiring no pre-assumed probabilistic distributions of random inputs, exploits data sets directly in estimating the PTTC. Besides, a sparse scheme is integrated to improve the computational efficiency. Numerical studies on the modified IEEE 118-bus system demonstrate that the proposed DDSPCE method can achieve accurate estimation for the probabilistic characteristics of PTTC with a high efficiency. Moreover, numerical results reveal the great significance of incorporating discrete random inputs in PTTC and ATC assessment, which nevertheless was not given sufficient attention.