论文标题

阐明量子与半古典退火中较高成功概率的起源

Unraveling the origin of higher success probabilities in quantum versus semi-classical annealing

论文作者

Starchl, Elias, Ritsch, Helmut

论文摘要

量子退火旨在使用合适的量子来寻找对复杂优化问题的最佳解决方案,许多人体在其基态下编码溶液。为了找到解决方案,通常会演变出可溶性最初的哈密顿量的基态,从而将其绝热地与指定的最终哈密顿量的基态发展。在这里,我们探讨了与经典平均场近似相比,动力学的完整量子表示是否会导致最终处于期望的地面的可能性更高。作为简单,非平凡的例子,我们针对相互作用的玻色子的基态,被捕获在紧密的结合晶格中,通过打开远距离相互作用,与局部较小的局部缺陷。通过两种空腔模式相互作用的四个位点中的两个原子证明了足够复杂,可以在完整的量子模型和介导相互作用的空腔场的平均场近似之间表现出显着差异。我们发现一个非常成功的量子退火的大参数区域,其中半古典方法在很大程度上失败了。在这里,我们看到有力的证据表明,纠缠终止接近最佳解决方案的重要性。量子模型还减少了高目标职业概率的最小时间。与对希尔伯特空间扩大的天真期望相反,希尔伯特空间的不同数值截止时间显示了较低临界值的性能提高,即短期降低的希尔伯特空间,用于短期模拟时间。因此,对完整量子动态的忠实表示有时会在较短的时间内产生更高的数值成功概率。但是,一个足够高的截止值证明是与单次运行中长时间模拟时间几乎完美的保真度相关的。总体而言,我们的结果基于量子模型而不是基于经典字段近似的模拟表现出明显的改进。

Quantum annealing aims at finding optimal solutions to complex optimization problems using a suitable quantum many body Hamiltonian encoding the solution in its ground state. To find the solution one typically evolves the ground state of a soluble initial Hamiltonian adiabatically to the ground state of the designated final Hamiltonian. Here we explore whether and when a full quantum representation of the dynamics leads to higher probability to end up in the desired ground when compared to a classical mean field approximation. As simple, nontrivial example we target the ground state of interacting bosons trapped in a tight binding lattice with small local defect by turning on long range interactions. Already two atoms in four sites interacting via two cavity modes prove complex enough to exhibit significant differences between the full quantum model and a mean field approximation for the cavity fields mediating the interactions. We find a large parameter region of highly successful quantum annealing where the semi-classical approach largely fails. Here we see strong evidence for the importance of entanglement to end close to the optimal solution. The quantum model also reduces the minimal time for a high target occupation probability. In contrast to naive expectations that enlarging the Hilbert space is beneficial, different numerical cut-offs of the Hilbert space reveal an improved performance for lower cut-offs, i.e. an nonphysical reduced Hilbert space, for short simulation times. Hence a less faithful representation of the full quantum dynamics sometimes creates a higher numerical success probability in shorter time. However, a sufficiently high cut-off proves relevant to obtain near perfect fidelity for long simulations times in a single run. Overall our results exhibit a clear improvement based on a quantum model versus simulations based on a classical field approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源