论文标题

在(非)单调性和相图上,

On (non-)monotonicity and phase diagram of finitary random interlacement

论文作者

Cai, Zhenhao, Xiong, Yunfeng, Zhang, Yuan

论文摘要

在本文中,我们研究了每个纤维的预期长度的朝鲜随机中间(FRI)的演变。与以前证明的足够大和小纤维长度之间证明的相变相反,我们表明,对于$ d = 3,4 $,随着纤维长度的增加,周五并不是随机单调的。同时,数值证据仍然强烈支持存在独特的无限群集的独特而尖锐的相变的存在,而相变的临界值估计是相对于系统强度的成反比的函数。

In this paper, we study the evolution of a Finitary Random Interlacement (FRI) with respect to the expected length of each fiber. In contrast to the previously proved phase transition between sufficiently large and small fiber length, we show that for $d=3,4$, FRI is NOT stochastically monotone as fiber length increasing. At the same time, numerical evidences still strongly support the existence of a unique and sharp phase transition on the existence of a unique infinite cluster, while the critical value for phase transition is estimated to be an inversely proportional function with respect to the system intensity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源