论文标题

尖峰神经网络 - 第二部分:检测时空模式

Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns

论文作者

Skatchkovsky, Nicolas, Jang, Hyeryung, Simeone, Osvaldo

论文摘要

受生物大脑运行的启发,尖峰神经网络(SNN)具有独特的能力,可以检测以峰值信号的时空模式编码的信息。需要时空处理的数据类型的示例包括时间戳记的日志,例如推文以及神经假体和神经形态传感器的输出。在本文中,我们首先要对SNN的三个评论论文进行了第二次评论,我们首先回顾了将SNN视为经常性神经网络(RNN)的主要方法的培训算法,并根据时间对SNN的需求进行基于反向传播的学习规则进行调整。为了解决峰值机制的非差异性,最先进的解决方案使用具有可区分函数近似阈值激活函数的替代梯度。然后,我们描述了一种依赖于尖峰神经元的概率模型的替代方法,从而可以通过梯度的随机估计来推导局部学习规则。最后,为神经形态数据集提供了实验,从而在不同的SNN模型下提供了对准确性和收敛性的见解。

Inspired by the operation of biological brains, Spiking Neural Networks (SNNs) have the unique ability to detect information encoded in spatio-temporal patterns of spiking signals. Examples of data types requiring spatio-temporal processing include logs of time stamps, e.g., of tweets, and outputs of neural prostheses and neuromorphic sensors. In this paper, the second of a series of three review papers on SNNs, we first review models and training algorithms for the dominant approach that considers SNNs as a Recurrent Neural Network (RNN) and adapt learning rules based on backpropagation through time to the requirements of SNNs. In order to tackle the non-differentiability of the spiking mechanism, state-of-the-art solutions use surrogate gradients that approximate the threshold activation function with a differentiable function. Then, we describe an alternative approach that relies on probabilistic models for spiking neurons, allowing the derivation of local learning rules via stochastic estimates of the gradient. Finally, experiments are provided for neuromorphic data sets, yielding insights on accuracy and convergence under different SNN models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源