论文标题
使用抗攻击的网络节点和事件触发的目标防御,增强了网络物理安全性
Enhanced Cyber-Physical Security Using Attack-resistant Cyber Nodes and Event-triggered Moving Target Defence
论文作者
论文摘要
本文概述了一种网络物理身份验证策略,以保护电力系统基础设施免受虚假数据注入(FDI)攻击。我们证明,使用小型,低成本但具有高度攻击的安全芯片作为测量节点是可行的,并通过事件触发的移动目标防御(MTD)增强了测量节点,以提供有效的网络物理安全性。在网络层,提出的解决方案是基于使用身份验证的加密协议的多器信任锚芯片,可在12/s的密码保护和链接的报告中提供密码保护和链式报告。信任主持人的可用性使网格控制器可以委派被动异常检测的各个方面,并支持本地和中央警报。在这种情况下,在物理层实现了分布式事件触发的MTD协议,以补充网络侧的增强。该协议采用基于Holt-Winters季节性预测的分布式异常检测方案,并结合通过电感扰动实施的MTD。该方案被证明可以有效防止或检测针对电力系统测量系统的广泛攻击。
This paper outlines a cyber-physical authentication strategy to protect power system infrastructure against false data injection (FDI) attacks. We demonstrate that it is feasible to use small, low-cost, yet highly attack-resistant security chips as measurement nodes, enhanced with an event-triggered moving target defence (MTD), to offer effective cyber-physical security. At the cyber layer, the proposed solution is based on the MULTOS Trust-Anchor chip, using an authenticated encryption protocol, offering cryptographically protected and chained reports at up to 12/s. The availability of the trust-anchors, allows the grid controller to delegate aspects of passive anomaly detection, supporting local as well as central alarms. In this context, a distributed event-triggered MTD protocol is implemented at the physical layer to complement cyber side enhancement. This protocol applies a distributed anomaly detection scheme based on Holt-Winters seasonal forecasting in combination with MTD implemented via inductance perturbation. The scheme is shown to be effective at preventing or detecting a wide range of attacks against power system measurement system.