论文标题

较弱的公态中心和共同体特性

Weak tolpological centers and cohomological properties

论文作者

Kojanaghi, Mostfa Shams, Azar, Kazem Haghnejad

论文摘要

让$ b $为Banach $ a-imodule $。我们介绍了左模块操作的弱拓扑中心,并通过$ \ tilde {z}^\ ell_ {b^{**}}}(a^{**})$显示。对于一个紧凑的组,我们表明$ l^1(g)= \ tilde {z} _ {m(g)^{**}}}}}^\ ell(l^1(g)^{**})$,另一方面,我们有$ \ tilde {z} {z} _1 _1^\ ell q ell {c _1^\ ne C_0^{**} $。因此,较弱的拓扑中心与左或右模块作用的拓扑中心不同。在本手稿中,我们研究了两个概念之间的关系,并在Banach代数中得出了一些结论。我们还将这个新概念和模块作用的拓扑中心应用于Banach代数,空间,薄弱的不舒服性和Banach代数的$ N $ n $ neak nak不舒适性。

Let $B$ be a Banach $A-bimodule$. We introduce the weak topological centers of left module action and we show it by $\tilde{Z}^\ell_{B^{**}}(A^{**})$. For a compact group, we show that $L^1(G)=\tilde{Z}_{M(G)^{**}}^\ell(L^1(G)^{**})$ and on the other hand we have $\tilde{Z}_1^\ell{(c_0^{**})}\neq c_0^{**}$. Thus the weak topological centers are different with topological centers of left or right module actions. In this manuscript, we investigate the relationships between two concepts with some conclusions in Banach algebras. We also have some application of this new concept and topological centers of module actions in the cohomological properties of Banach algebras, spacial, in the weak amenability and $n$-weak amenability of Banach algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源