论文标题

基于转换模型的统计保证,并具有应用于隐式变异推理的应用

Statistical Guarantees for Transformation Based Models with Applications to Implicit Variational Inference

论文作者

Plummer, Sean, Zhou, Shuang, Bhattacharya, Anirban, Dunson, David, Pati, Debdeep

论文摘要

基于转换的方法是针对问题的非参数推断的一种有吸引力的方法,例如由于其独特的层次结构而引起的无条件和条件密度估计,该结构将数据模拟为一组常见的潜在变量的灵活转换。最近,基于转换的模型已用于变异推理(VI)中,以构建各种分布的灵活隐式家庭。但是,它们在非参数推断和变异推断中的使用缺乏理论上的理由。我们通过证明在$ L_1 $ sense中使用非线性潜在变量模型(NL-LVM)在非参数推断中使用非线性潜在变量模型(NL-LVM)提供了理论上的理由。我们还表明,当先验将高斯过程(GP)放置在转换函数上时,后部浓度以最佳速率为对数因子。在非参数环境中采用灵活性,我们使用NL-LVM来构建一个被视为GP-IVI的差异分布家族。我们描述了足够的条件,在该条件下,GP-IVI达到了最佳的风险界限,并在Kullback-Leibler Divergence的意义上近似真正的后部。据我们所知,这是为隐式变异推理提供理论保证的第一项工作。

Transformation-based methods have been an attractive approach in non-parametric inference for problems such as unconditional and conditional density estimation due to their unique hierarchical structure that models the data as flexible transformation of a set of common latent variables. More recently, transformation-based models have been used in variational inference (VI) to construct flexible implicit families of variational distributions. However, their use in both non-parametric inference and variational inference lacks theoretical justification. We provide theoretical justification for the use of non-linear latent variable models (NL-LVMs) in non-parametric inference by showing that the support of the transformation induced prior in the space of densities is sufficiently large in the $L_1$ sense. We also show that, when a Gaussian process (GP) prior is placed on the transformation function, the posterior concentrates at the optimal rate up to a logarithmic factor. Adopting the flexibility demonstrated in the non-parametric setting, we use the NL-LVM to construct an implicit family of variational distributions, deemed GP-IVI. We delineate sufficient conditions under which GP-IVI achieves optimal risk bounds and approximates the true posterior in the sense of the Kullback-Leibler divergence. To the best of our knowledge, this is the first work on providing theoretical guarantees for implicit variational inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源