论文标题

长期记忆神经元均衡器

Long Short-Term Memory Neuron Equalizer

论文作者

Wang, Zihao, Xu, Zhifei, He, Jiayi, Hwang, Chulsoon, Fan, Jun, Delingette, Hervé

论文摘要

在这项工作中,我们通过基于深度学习的实现,提出了基于神经硬件的信号均衡器。所提出的神经均衡器是可塑性可训练的均衡器,它与基于传统模型的DFE不同。提出了可训练的长期记忆神经网络基于DFE架构,以通过FPGA实现评估数字实现。通过基于建模的均衡方法构建,所提出的方法与多频率信号均衡兼容,而不是单型信号均衡。我们定量地表明,与基准方法相比,在模拟和数字实现方面既优于不同指标的神经型均衡器。所提出的方法对于一般的神经形态计算或ASIC仪器都是适应性的。

In this work we propose a neuromorphic hardware based signal equalizer by based on the deep learning implementation. The proposed neural equalizer is plasticity trainable equalizer which is different from traditional model designed based DFE. A trainable Long Short-Term memory neural network based DFE architecture is proposed for signal recovering and digital implementation is evaluated through FPGA implementation. Constructing with modelling based equalization methods, the proposed approach is compatible to multiple frequency signal equalization instead of single type signal equalization. We shows quantitatively that the neuronmorphic equalizer which is amenable both analog and digital implementation outperforms in different metrics in comparison with benchmarks approaches. The proposed method is adaptable both for general neuromorphic computing or ASIC instruments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源