论文标题

i-Quantum group u^J(n)的新实现

A new realization of the i-quantum group U^j(n)

论文作者

Du, Jie, Wu, Yadi

论文摘要

我们遵循Beilinson-Lusztig-Macpherson开发的方法,并由FU和第一作者进行了修改,以研究B型i- Quantum组U^J(n)的新实现,并在[BKLW,Lem。〜3.2]中发现的乘法公式建立在乘积公式上。这使我们能够通过生成器通过基础和乘法公式呈现u^j(n)。我们还建立了从u^j(n)的lusztig类型形式到B型的Q-Schur代数的分支代数同构。因此,基本变化使我们能够将U^J(n)的i- Quantum hyperalgebras的表示形式联系起来,u^j(n)的I- Quantum Hyperalgebras在未定义的奇数奇数中的有限正交群体的代表。这将Dipper的一部分概括为B型情况。

We follow the approach developed by Beilinson-Lusztig-MacPherson and modified by Fu and the first author to investigate a new realization for the i-quantum groups U^j(n) of type B, building on the multiplication formulas discovered in [BKLW,Lem.~3.2]. This allows us to present U^j(n) via a basis and multiplication formulas by generators. We also establish a surjective algebra homomorphism from a Lusztig type form of U^j(n) to integral q-Schur algebras of type B. Thus, base changes allow us to relate representations of the i-quantum hyperalgebras of U^j(n) to representations of finite orthogonal groups of odd degree in non-defining characteristics. This generalizes part of Dipper--James' type A theory to the type B case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源