论文标题
动态不连贯的表面内态
Dynamically incoherent surface endomorphisms
论文作者
论文摘要
我们明确地在任何线性扩展映射的同型类别中,用整数特征值构建了$ \ mathbb {t}^2 $的动态不连贯的内态性内态。这些示例表现出沿着许多圆圈的中心曲线的分支,因此表现出一种连贯性的形式,这些形式尚未观察到可逆系统。
We explicitly construct a dynamically incoherent partially hyperbolic endomorphisms of $\mathbb{T}^2$ in the homotopy class of any linear expanding map with integer eigenvalues. These examples exhibit branching of centre curves along countably many circles, and thus exhibit a form of coherence that has not been observed for invertible systems.