论文标题

一项关于机器学习的探索性研究,以对部分微分方程的数值解

An exploratory study on machine learning to couple numerical solutions of partial differential equations

论文作者

Tang, H. S., Li, L., Grossberg, M., Liu, Y. J., Jia, Y. M., Li, S. S., Dong, W. B.

论文摘要

随着耦合部分微分方程(PDE)的准确有效计算的进一步进展变得越来越困难,为开发这种计算的新方法已变得非常希望。在与常规方法的偏差中,这篇简短的通信论文探讨了一种计算范式,该计算范式通过基于机器学习(ML)的方法将PDE的数值解决方案以及对范式进行初步研究。特别是,它像常规方法一样解决子域中的PDE,但开发并训练人工神经网络(ANN)将PDES的求解求助于其界面,从而导致了整个域中PDES的解决方案。使用耦合的泊松方程和耦合的对流扩散方程讨论了ML耦合的概念和算法。初步数值示例说明了ML耦合的可行性和性能。尽管初步,但这项探索性研究的结果表明,ML范式是有希望的,值得进一步研究。

As further progress in the accurate and efficient computation of coupled partial differential equations (PDEs) becomes increasingly difficult, it has become highly desired to develop new methods for such computation. In deviation from conventional approaches, this short communication paper explores a computational paradigm that couples numerical solutions of PDEs via machine-learning (ML) based methods, together with a preliminary study on the paradigm. Particularly, it solves PDEs in subdomains as in a conventional approach but develops and trains artificial neural networks (ANN) to couple the PDEs' solutions at their interfaces, leading to solutions to the PDEs in the whole domains. The concepts and algorithms for the ML coupling are discussed using coupled Poisson equations and coupled advection-diffusion equations. Preliminary numerical examples illustrate the feasibility and performance of the ML coupling. Although preliminary, the results of this exploratory study indicate that the ML paradigm is promising and deserves further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源