论文标题

数据驱动的周期轨道稳定

Data-Driven Stabilization of Periodic Orbits

论文作者

Bramburger, Jason J., Kutz, J. Nathan, Brunton, Steven L.

论文摘要

周期性轨道是动态系统最简单的非平衡解决方案之一,它们在我们对许多系统中观察到的丰富结构的现代理解中发挥了重要作用。例如,众所周知,嵌入在任何混乱的吸引子中是无限的许多不稳定的周期轨道(UPOS),因此可以将混乱的轨迹视为以看似不可预测的方式从一个UPO到另一个UPO的“跳跃”。许多研究试图利用这些UPO的存在来控制混乱的系统。这些方法依赖于每次轨迹横切到流程的横截面时,都会引入小而精确的参数操作。通常,这些方法遭受了以下事实:它们需要对庞加莱映射的流量进行精确描述,这是一项艰巨的任务,因为没有系统的方式生产与给定系统相关的映射。在这里,我们采用了最新的模型发现方法来生成准确和简约的参数依赖性庞加莱映射,以稳定非线性动力学系统中的UPOS。具体而言,我们使用非线性动力学(SINDY)方法的稀疏识别将模型发现作为稀疏回归问题,可以以计算有效的方式实现。这种方法提供了一个明确的庞加莱映射,忠实地描述了庞加莱部分中流动的动态,可用于识别UPOS。对于每个UPO,我们确定稳定该轨道的参数操作。这些方法的实用性在多种微分方程上证明,包括混乱的参数状态下的Rössler系统。

Periodic orbits are among the simplest non-equilibrium solutions to dynamical systems, and they play a significant role in our modern understanding of the rich structures observed in many systems. For example, it is known that embedded within any chaotic attractor are infinitely many unstable periodic orbits (UPOs) and so a chaotic trajectory can be thought of as `jumping' from one UPO to another in a seemingly unpredictable manner. A number of studies have sought to exploit the existence of these UPOs to control a chaotic system. These methods rely on introducing small, precise parameter manipulations each time the trajectory crosses a transverse section to the flow. Typically these methods suffer from the fact that they require a precise description of the Poincaré mapping for the flow, which is a difficult task since there is no systematic way of producing such a mapping associated to a given system. Here we employ recent model discovery methods for producing accurate and parsimonious parameter-dependent Poincaré mappings to stabilize UPOs in nonlinear dynamical systems. Specifically, we use the sparse identification of nonlinear dynamics (SINDy) method to frame model discovery as a sparse regression problem, which can be implemented in a computationally efficient manner. This approach provides an explicit Poincaré mapping that faithfully describes the dynamics of the flow in the Poincaré section and can be used to identify UPOs. For each UPO, we then determine the parameter manipulations that stabilize this orbit. The utility of these methods are demonstrated on a variety of differential equations, including the Rössler system in a chaotic parameter regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源