论文标题
通过Gaia和Gaussian流程减少地面的天文误差
Reducing ground-based astrometric errors with Gaia and Gaussian processes
论文作者
论文摘要
由大气湍流引起的随机场变形是对地面成像的天体准确性的基本限制。该失真场在恒星的位置可测量,并具有由Gaia DR2目录提供的准确位置。我们开发使用高斯过程回归(GPR)将失真场插入到每个暴露中的任意位置。我们对标准GPR技术引入了扩展,该技术利用了二维失真场不含卷发的知识。应用于测试床上的几百个90秒的暴露,我们发现GPR校正降低了湍流扭曲的差异$ \ of times $ \ of12 \ times $,平均而言,在Gaia目录的密集区域中的性能更好。 $ riz $ bands中的RMS每位坐标失真通常为$ \ \ \ y \ of the CORCORTICT之前的$ \ y \ oss,在应用GPR模型后,$ \ of $ \ of 2 $ mas。 GPR星形校正通过观察结果验证,即它们的使用率从10到5个MAS RMS减少到轨道上的残差到$ riz $ band的观测值,$ r = 18.5 $ r = 18.5 $ trans-trans-Neptunian对象Eris。我们还提出了一种尚未实施的GPR方法,以同时估算一堆重叠的暴露量中的湍流场和5维恒星解决方案,这将在未来的深度调查中进一步降低湍流。
Stochastic field distortions caused by atmospheric turbulence are a fundamental limitation to the astrometric accuracy of ground-based imaging. This distortion field is measurable at the locations of stars with accurate positions provided by the Gaia DR2 catalog; we develop the use of Gaussian process regression (GPR) to interpolate the distortion field to arbitrary locations in each exposure. We introduce an extension to standard GPR techniques that exploits the knowledge that the 2-dimensional distortion field is curl-free. Applied to several hundred 90-second exposures from the Dark Energy Survey as a testbed, we find that the GPR correction reduces the variance of the turbulent distortions $\approx12\times$, on average, with better performance in denser regions of the Gaia catalog. The RMS per-coordinate distortion in the $riz$ bands is typically $\approx7$ mas before any correction, and $\approx2$ mas after application of the GPR model. The GPR astrometric corrections are validated by the observation that their use reduces, from 10 to 5 mas RMS, the residuals to an orbit fit to $riz$-band observations over 5 years of the $r=18.5$ trans-Neptunian object Eris. We also propose a GPR method, not yet implemented, for simultaneously estimating the turbulence fields and the 5-dimensional stellar solutions in a stack of overlapping exposures, which should yield further turbulence reductions in future deep surveys.