论文标题

深度低级加上稀疏网络,用于动态MR成像

Deep Low-rank plus Sparse Network for Dynamic MR Imaging

论文作者

Huang, Wenqi, Ke, Ziwen, Cui, Zhuo-Xu, Cheng, Jing, Qiu, Zhilang, Jia, Sen, Ying, Leslie, Zhu, Yanjie, Liang, Dong

论文摘要

在动态磁共振(MR)成像中,低级别加稀疏(L+S)分解或可靠的主成分分析(PCA)已达到惊人的性能。但是,L+S参数的选择是经验的,加速度率是有限的,这是迭代压缩感应MR成像(CS-MRI)重建方法的常见失败。已经提出了许多深度学习方法来解决这些问题,但是很少有人会使用低级的先验。在本文中,提出了一个基于模型的低级别加上稀疏网络,称为L+S-NET,用于动态MR重建。特别是,我们使用一种交替的线性最小化方法来解决低级别和稀疏正则化的优化问题。引入了学到的软奇异值阈值,以确保L分量和S组分的清晰分离。然后,将迭代步骤展开到一个可以学习的正规化参数的网络中。我们证明,所提出的L+S-NET在两个标准假设下实现了全球收敛。关于回顾性和前瞻性心脏电影数据集的实验表明,所提出的模型优于最先进的CS和现有的深度学习方法,并且具有极高的高速加速因子(高达24倍)的潜力。

In dynamic magnetic resonance (MR) imaging, low-rank plus sparse (L+S) decomposition, or robust principal component analysis (PCA), has achieved stunning performance. However, the selection of the parameters of L+S is empirical, and the acceleration rate is limited, which are common failings of iterative compressed sensing MR imaging (CS-MRI) reconstruction methods. Many deep learning approaches have been proposed to address these issues, but few of them use a low-rank prior. In this paper, a model-based low-rank plus sparse network, dubbed L+S-Net, is proposed for dynamic MR reconstruction. In particular, we use an alternating linearized minimization method to solve the optimization problem with low-rank and sparse regularization. Learned soft singular value thresholding is introduced to ensure the clear separation of the L component and S component. Then, the iterative steps are unrolled into a network in which the regularization parameters are learnable. We prove that the proposed L+S-Net achieves global convergence under two standard assumptions. Experiments on retrospective and prospective cardiac cine datasets show that the proposed model outperforms state-of-the-art CS and existing deep learning methods and has great potential for extremely high acceleration factors (up to 24x).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源