论文标题

摩尔流的同义理论(i)

Homotopy theory of Moore flows (I)

论文作者

Gaucher, Philippe

论文摘要

勘误,2022年7月11日:这是原始论文的更新版本,其中重新介绍类别的概念被错误地化为公理。附录中提供了有关原始论文更改的详细信息。 再载体化类别是一个小的拓扑富集的半型半体类别类别,因此半牙样结构在物体上诱导半群的结构,因此所有地图的所有空间都是可缩合的,因此每个地图都可以分解为(不一定以独特的方式),作为两张映射的张力产品。摩尔流量是一个小的半酸性,比在重新分析类别上富集的富集的预性类别的半乳突类别富集。我们构建了摩尔流的Q模型类别。事实证明,它是Quillen等同于Q-ModeL类别的流量。该结果是建立多头$ d $ - 空格的Q模型结构与流量的Q模型结构之间建立Quillen等价曲线的第一步。

Erratum, 11 July 2022: This is an updated version of the original paper in which the notion of reparametrization category was incorrectly axiomatized. Details on the changes to the original paper are provided in the Appendix. A reparametrization category is a small topologically enriched semimonoidal category such that the semimonoidal structure induces a structure of a semigroup on objects, such that all spaces of maps are contractible and such that each map can be decomposed (not necessarily in a unique way) as a tensor product of two maps. A Moore flow is a small semicategory enriched over the biclosed semimonoidal category of enriched presheaves over a reparametrization category. We construct the q-model category of Moore flows. It is proved that it is Quillen equivalent to the q-model category of flows. This result is the first step to establish a zig-zag of Quillen equivalences between the q-model structure of multipointed $d$-spaces and the q-model structure of flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源