论文标题

建模长期变量-II。非线性制度中的基本模式搏动

Modelling Long-Period Variables -- II. Fundamental mode pulsation in the nonlinear regime

论文作者

Trabucchi, Michele, Wood, Peter R., Mowlavi, Nami, Pastorelli, Giada, Marigo, Paola, Girardi, Léo, Lebzelter, Thomas

论文摘要

发光红色巨人的长周期变异性具有多种有希望的应用,所有这些都需要能够准确预测脉动周期的模型。事实证明,线性脉动模型成功地重现了进化的红色巨人中观察到的泛音模式的时期,但它们无法准确预测其基本模式周期。在这里,我们使用1D流体动力代码来研究非线性状态中M型渐近巨型分支星的长期周期变异性。我们检查了低阶径向脉动模式的周期和稳定性与质量和半径的函数,并与线性脉动模型的预测完全吻合,发现了泛音模式周期。相比之下,非线性模型预测了较早的主要基本模式搏动和大半径的较短时期的发作。这两种功能都与观察结果达成了基本上更好的一致性,我们可以验证麦哲伦云的OGLE和GAIA数据。我们提供了描述非线性基本模式的简单分析关系。关于线性预测的差异源于由大振幅脉动引起的包膜结构的调整。我们研究了湍流粘度对线性和非线性脉动的影响,以及探测金属性和碳丰度的可能影响。

Long-period variability in luminous red giants has several promising applications, all of which require models able to accurately predict pulsation periods. Linear pulsation models have proven successful in reproducing the observed periods of overtone modes in evolved red giants, but they fail to accurately predict their fundamental mode periods. Here, we use a 1D hydrodynamic code to investigate the long-period variability of M-type asymptotic giant branch stars in the nonlinear regime. We examine the period and stability of low-order radial pulsation modes as a function of mass and radius, and find overtone mode periods in complete agreement with predictions from linear pulsation models. In contrast, nonlinear models predict an earlier onset of dominant fundamental mode pulsation, and shorter periods at large radii. Both features lead to a substantially better agreement with observations, that we verify against OGLE and Gaia data for the Magellanic Clouds. We provide simple analytic relations describing the nonlinear fundamental mode period-mass-radius relation. Differences with respect to linear predictions originate from the readjustment of the envelope structure induced by large-amplitude pulsation. We investigate the impact of turbulent viscosity on linear and nonlinear pulsation, and probe possible effects of varying metallicity and carbon abundance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源