论文标题

图形小取消基团的相对双曲

Relative Hyperbolicity of Graphical Small Cancellation Groups

论文作者

Han, Suzhen

论文摘要

D. Gruber定义的标有图形$γ$是一条标记的路​​径,以两种基本不同的方式嵌入$γ$。我们证明,图形$ gr'(\ frac {1} {6})$小取消组的相关件具有均匀界限的长度是相对双曲线。实际上,我们表明,相对于定义图$γ$的所有嵌入式组件的收集,当时且仅当$γ$均匀界限时,这种组呈现的Cayley图是渐近树的渐近树。这意味着由C.druţu,D。Osin和M. Sapir的结果相对双曲。

A piece of a labelled graph $Γ$ defined by D. Gruber is a labelled path that embeds into $Γ$ in two essentially different ways. We prove that graphical $Gr'(\frac{1}{6})$ small cancellation groups whose associated pieces have uniformly bounded length are relative hyperbolic. In fact, we show that the Cayley graph of such group presentation is asymptotically tree-graded with respect to the collection of all embedded components of the defining graph $Γ$, if and only if the pieces of $Γ$ are uniformly bounded. This implies the relative hyperbolicity by a result of C. Druţu, D. Osin and M. Sapir.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源