论文标题
在新兴经济中对国内生产总值预测的系统比较
A Systematic Comparison of Forecasting for Gross Domestic Product in an Emergent Economy
论文作者
论文摘要
国内生产总值(GDP)是一个重要的经济指标,该指标汇总了有用的信息,以帮助经济代理人和决策者进行决策过程。在这种情况下,GDP的预测成为多个领域的强大决策优化工具。为了朝这个方向做出贡献,我们研究了适用于巴西国内生产总值的经典时间序列模型,州空间模型和神经网络模型的效率。所使用的模型是:季节性自回归的集成运动平均线(Sarima)和Holt-winters方法,它们是经典的时间序列模型;动态线性模型,一个状态空间模型;以及神经网络自动摄影和多层感知器,人工神经网络模型。基于模型比较的统计指标,多层感知器在分析期间提出了最佳的样本内和外样品预测性能,也显着纳入了生长速率结构。
Gross domestic product (GDP) is an important economic indicator that aggregates useful information to assist economic agents and policymakers in their decision-making process. In this context, GDP forecasting becomes a powerful decision optimization tool in several areas. In order to contribute in this direction, we investigated the efficiency of classical time series models, the state-space models, and the neural network models, applied to Brazilian gross domestic product. The models used were: a Seasonal Autoregressive Integrated Moving Average (SARIMA) and a Holt-Winters method, which are classical time series models; the dynamic linear model, a state-space model; and neural network autoregression and the multilayer perceptron, artificial neural network models. Based on statistical metrics of model comparison, the multilayer perceptron presented the best in-sample and out-sample forecasting performance for the analyzed period, also incorporating the growth rate structure significantly.