论文标题

V.I.阿诺德的“全局” kaM定理和几何措施估计值

V.I. Arnold's "Global" KAM Theorem and geometric measure estimates

论文作者

Chierchia, L., Koudjinan, C. E.

论文摘要

本文继续讨论始于[CK19],涉及阿诺德在古典KAM理论和(其中一些)现代发展的遗产。我们证明了一种详细而明确的“全球” Arnold的KAM定理,尤其是在封闭的,无处不在的,无处可靠的积极测量的相位空间子集上,非分级,实地,无效的Hamiltony系统的惠特尼共轭与可集成的系统的共同系统。在相位空间中,提供了Kolmogorov的详细度量估计值:(a)任意(边界)设置的均匀邻域d-torus和(b)具有$ c^2 $ bouncy the d torus d-torus的域。所有常数都明确给出。

This paper continues the discussion started in [CK19] concerning Arnold's legacy on classical KAM theory and (some of) its modern developments. We prove a detailed and explicit `global' Arnold's KAM Theorem, which yields, in particular, the Whitney conjugacy of a non-degenerate, real-analytic, nearly-integrable Hamiltonian system to an integrable system on a closed, nowhere dense, positive measure subset of the phase space. Detailed measure estimates on the Kolmogorov's set are provided in the case the phase space is: (A) a uniform neighborhood of an arbitrary (bounded) set times the d-torus and (B) a domain with $C^2$ boundary times the d-torus. All constants are explicitly given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源