论文标题

Artin组的亚组可分离性

Subgroup Separability of Artin Groups

论文作者

Almeida, Kisnney, Lima, Igor

论文摘要

我们在ARTIN组的基础图上找到了一个条件,该条件完全确定其是否可分离。结果,只有当它可以通过有限的自由产品和无限循环基团的直接产物从级别的ARTIN组获得,并且只有在最多可分离的Artin组时,ARTIN组可分开。该结果概括了右角Artin组的METAFTSIS-RAPTIS标准。

We find a condition on the underlying graph of an Artin group that fully determines if it is subgroup separable. As a consequence, an Artin group is subgroup separable if and only if it can be obtained from Artin groups of ranks at most 2 via a finite sequence of free products and direct products with the infinite cyclic group. This result generalizes the Metaftsis-Raptis criterion for Right-Angled Artin groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源