论文标题

WMT 2020无监督的机器翻译共享任务的LMU慕尼黑系统

The LMU Munich System for the WMT 2020 Unsupervised Machine Translation Shared Task

论文作者

Chronopoulou, Alexandra, Stojanovski, Dario, Hangya, Viktor, Fraser, Alexander

论文摘要

本文描述了LMU慕尼黑对WMT 2020的无监督共享任务,以两个语言指示,德语<->上索尔比安。我们的核心无监督神经机器翻译(UNMT)系统遵循Chronopoulou等人的策略。 (2020年),使用单语言预处理的语言生成模型(在德语上),并在德语和上层索尔比亚语上对其进行微调,然后初始化UNMT模型,该模型接受了在线退缩培训。从无监督的统计机转换(USMT)系统获得的伪并行数据用于微调UNMT模型。我们还将BPE-Dropout应用于低资源(上层索尔比亚)数据以获得更强大的系统。我们还尝试了残留的适配器,并发现它们在上索尔比亚>德国方向上有用。我们探索在倒退和课程中学习的采样,以更有原则的方式使用SMT翻译。最后,我们整合了表现最佳的系统,并在德国 - >上索尔比亚人的BLEU得分为32.4,而上索尔比亚 - >德国人则达到35.2。

This paper describes the submission of LMU Munich to the WMT 2020 unsupervised shared task, in two language directions, German<->Upper Sorbian. Our core unsupervised neural machine translation (UNMT) system follows the strategy of Chronopoulou et al. (2020), using a monolingual pretrained language generation model (on German) and fine-tuning it on both German and Upper Sorbian, before initializing a UNMT model, which is trained with online backtranslation. Pseudo-parallel data obtained from an unsupervised statistical machine translation (USMT) system is used to fine-tune the UNMT model. We also apply BPE-Dropout to the low resource (Upper Sorbian) data to obtain a more robust system. We additionally experiment with residual adapters and find them useful in the Upper Sorbian->German direction. We explore sampling during backtranslation and curriculum learning to use SMT translations in a more principled way. Finally, we ensemble our best-performing systems and reach a BLEU score of 32.4 on German->Upper Sorbian and 35.2 on Upper Sorbian->German.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源