论文标题
无线超声成像的压缩傅里叶域卷积波束形成
Compressed Fourier-Domain Convolutional Beamforming for Wireless Ultrasound imaging
论文作者
论文摘要
产生高质量图像的无线超声(US)系统可以通过使用户更有效,负担得起和可访问的成像过程来提高当前的临床诊断能力。生成B模式US映像的最常见技术是延迟和总和(DAS)波束形成,其中将适当的延迟引入到每个传感器元素处采样和处理的信号。但是,高分辨率DAS型的采样率远高于信号的Nyquist信号速率,从而导致大量数据,从而使通道数据传输到WiFi上不切实际。此外,表现出高分辨率和良好图像对比度的美国图像的生产需要大量的传感器,从而进一步增加了数据大小。先前的工作提出了降低采样率和阵列大小的方法。在这项工作中,我们引入了压缩的傅立叶域卷积光束形成,结合了傅立叶域波束,稀疏的卷积光束和压缩的传感方法。这允许减少每个元素中数组元素的数量和采样率,同时达到高分辨率图像。使用体内数据,我们证明了所提出的方法可以使用比DAS少的142倍生成B模式图像。我们的结果铺平了通往无线的方式,并证明可以使用子nyquist采样和少量接收通道来生成高分辨率的US图像。
Wireless ultrasound (US) systems that produce high-quality images can improve current clinical diagnosis capabilities by making the imaging process much more efficient, affordable, and accessible to users. The most common technique for generating B-mode US images is delay and sum (DAS) beamforming, where an appropriate delay is introduced to signals sampled and processed at each transducer element. However, sampling rates that are much higher than the Nyquist rate of the signal are required for high resolution DAS beamforming, leading to large amounts of data, making transmission of channel data over WIFI impractical. Moreover, the production of US images that exhibit high resolution and good image contrast requires a large set of transducers which further increases the data size. Previous works suggest methods for reduction in sampling rate and in array size. In this work, we introduce compressed Fourier domain convolutional beamforming, combining Fourier domain beamforming, sparse convolutional beamforming, and compressed sensing methods. This allows reducing both the number of array elements and the sampling rate in each element, while achieving high resolution images. Using in vivo data we demonstrate that the proposed method can generate B-mode images using 142 times less data than DAS. Our results pave the way towards wireless US and demonstrate that high resolution US images can be produced using sub-Nyquist sampling and a small number of receiving channels.