论文标题
p(x) - 拉普拉斯方程的解决方案的Hölder连续性,右侧一侧
Hölder continuity for the solutions of the p(x)-Laplace equation with general right-hand side
论文作者
论文摘要
我们表明,quasilinear椭圆方程的有界解决方案$δ_{p(x)} u = g+div(\ textbf {f})$是本地hölder连续的,前提是函数$ g $和$ g $和$ \ textbf {f} $在合适的lebesgue空间中。
We show that bounded solutions of the quasilinear elliptic equation $Δ_{p(x)} u=g+div(\textbf{F})$ are locally Hölder continuous provided that the functions $g$ and $\textbf{F}$ are in suitable Lebesgue spaces.