论文标题
项链编织组的表示{nb}} _ n维度的表示(n = 2,3,4)
Representations of the necklace braid group {NB}}_n of dimension (n=2,3,4)
论文作者
论文摘要
我们考虑项链编织组$ \ mathcal {nb} _n $的尺寸2的不可约表示($ n = 2,3,4 $)。然后,我们考虑$ \ MATHCAL {NB} _n $($ n = 2,3,4 $)的表示形式的张量产品,并确定构造的表示不可约定的必要条件。最后,我们确定$ \ Mathcal {nb} _n $($ n = 2,3,4 $ 2的不可约表示的条件
We consider the irreducible representations each of dimension 2 of the necklace braid group $\mathcal{NB}_n$ ($n=2,3,4$). We then consider the tensor product of the representations of $\mathcal{NB}_n$ ($n=2,3,4$) and determine necessary and sufficient condition under which the constructed representations are irreducible. Finally, we determine conditions under which the irreducible representations of $\mathcal{NB}_n$ ($n=2,3,4$) of degree 2 are unitary relative to a hermitian positive definite matrix