论文标题
关于复杂社交网络中异常检测的合成数据生成
On synthetic data generation for anomaly detection in complex social networks
论文作者
论文摘要
本文研究了关键任务应用的合成数据生成的可行性。重点是复杂社交网络中异常检测的合成数据生成。特别是,寻求启发式生成模型的开发,能够在复杂的社交网络中为异常罕见活动创建数据。为此,基于代理商之间简单的社会互动,将社会和政治文献的经验教训用于原型的原型,一种基于代理的建模(ABM)框架的新颖实现,用于在恐怖分子概况脱离的背景下生成合成数据。该结论提供了进一步验证,微调和提出的方向,并提出了通过识别启发式超参数调整方法来进一步确保生成的数据分布与原始数据集的真实分布相似,以作为合成数据生成的复杂 - 斜体方法作为合成数据生成的复杂方法。尽管在这项工作中未提供用于减少分布距离的严格数学优化,但我们认为,自主代理生成的复杂社会模型的这种原型对于研究和研究生活模式和异常检测模式很有用,在该模式中,在某些情况下使用严格的限制或缺乏在任务中的机器研究解决方案中缺乏足够的限制或缺乏在宣教问题中的机器学习解决方案。
This paper studies the feasibility of synthetic data generation for mission-critical applications. The emphasis is on synthetic data generation for anomalous detection in complex social networks. In particular, the development of a heuristic generative model, capable of creating data for anomalous rare activities in complex social networks is sought. To this end, lessons from social and political literature are applied to prototype a novel implementation of the Agent-based Modeling (ABM) framework, based on simple social interactions between agents, for synthetic data generation in the context of terrorist profile desegregation. The conclusion offers directions for further verification, fine-tuning, and proposes future directions of work for the ABM prototype, as a complex-societal approach to synthetic data generation, by identifying heuristic hyper-parameter tuning methodologies to further ensure the generated data distribution is similar to the true distribution of the original data-sets. While a rigorous mathematical optimization for reducing the distances in distributions is not offered in this work, we opine that this prototype of an autonomous-agent generative complex social model is useful for studying and researching on pattern of life and anomaly detection where there is strict limitation or lack of sufficient data for using practical machine learning solutions in mission-critical applications.