论文标题
多模式传感器融合与可区分过滤器
Multimodal Sensor Fusion with Differentiable Filters
论文作者
论文摘要
使用递归贝叶斯过滤器利用多模式信息可以提高状态估计的性能和稳健性,因为递归过滤器可以根据其不确定性将不同的模式结合在一起。先前的工作已经研究了如何将不同的传感器方式与分析状态估计算法进行最佳融合。但是,得出动力学和测量模型及其噪声轮廓可能很困难或导致棘手的模型。可微分的过滤器提供了一种学习这些模型端到端的方法,同时保留了递归过滤器的算法结构。当使用高维度且具有非常不同特征的传感器方式时,这可能特别有用。在接触丰富的操作中,我们希望将视觉传感(为我们提供全球信息)与触觉感应(为我们提供本地信息)相结合。在本文中,我们研究了新的可区分过滤体系结构以融合异质传感器信息。作为案例研究,我们评估了三个任务:两个在平面推动(模拟和真实)中,另一个是操纵运动学约束的门(模拟)。在广泛的评估中,我们发现利用跨模式传感器信息的可区分过滤器达到与非结构化LSTM模型的可比精度,同时提出了对安全至关重要系统可能很重要的可解释性优势。我们还发布了一个开源库,用于在Pytorch中创建和培训可区分的贝叶斯过滤器,可以在我们的项目网站上找到:https://sites.google.com/view/multimodalfilter
Leveraging multimodal information with recursive Bayesian filters improves performance and robustness of state estimation, as recursive filters can combine different modalities according to their uncertainties. Prior work has studied how to optimally fuse different sensor modalities with analytical state estimation algorithms. However, deriving the dynamics and measurement models along with their noise profile can be difficult or lead to intractable models. Differentiable filters provide a way to learn these models end-to-end while retaining the algorithmic structure of recursive filters. This can be especially helpful when working with sensor modalities that are high dimensional and have very different characteristics. In contact-rich manipulation, we want to combine visual sensing (which gives us global information) with tactile sensing (which gives us local information). In this paper, we study new differentiable filtering architectures to fuse heterogeneous sensor information. As case studies, we evaluate three tasks: two in planar pushing (simulated and real) and one in manipulating a kinematically constrained door (simulated). In extensive evaluations, we find that differentiable filters that leverage crossmodal sensor information reach comparable accuracies to unstructured LSTM models, while presenting interpretability benefits that may be important for safety-critical systems. We also release an open-source library for creating and training differentiable Bayesian filters in PyTorch, which can be found on our project website: https://sites.google.com/view/multimodalfilter