论文标题

完美的Prishchepov团体

Perfect Prishchepov groups

论文作者

Chinyere, Ihechukwu, Bainson, Bernard Oduoku

论文摘要

我们研究了$ \ mathfrak {f} $类型的周期性呈现组,以确定它们何时完美。事实证明,这样做是足以考虑prishchepov群体,因此,在定义整数参数$ r,n,n,k,s,q $方面,我们将一定猜想的一个猜想分类,我们对完美的prishchepov组$ p(r,n,n,k,s,q)$进行了分类。特别是,我们获得了完美的坎贝尔和罗伯逊的fibonacci-type组$ h(r,n,s)$的分类,从而证明了威廉姆斯的猜想,并对$ h(r,n,s)$进行了完整的分类,这些分类$ h(r,n,s)$连接了定向的图形组。

We study cyclically presented groups of type $\mathfrak{F}$ to determine when they are perfect. It turns out that to do so, it is enough to consider the Prishchepov groups, so modulo a certain conjecture, we classify the perfect Prishchepov groups $P(r,n,k,s,q)$ in terms of the defining integer parameters $r,n,k,s,q$. In particular, we obtain a classification of the perfect Campbell and Robertson's Fibonacci-type groups $H(r,n,s)$, thereby proving a conjecture of Williams, and yielding a complete classification of the groups $H(r,n,s)$ that are connected Labelled Oriented Graph groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源