论文标题

回归任务的分布式检测:参数与预测器熵

Out-of-distribution detection for regression tasks: parameter versus predictor entropy

论文作者

Pequignot, Yann, Alain, Mathieu, Dallaire, Patrick, Yeganehparast, Alireza, Germain, Pascal, Desharnais, Josée, Laviolette, François

论文摘要

至关重要的是要检测一个实例何时距离训练样本太远,以至于可以信任机器学习模型,这是一个被称为分布(OOD)检测的挑战。对于神经网络,该任务的一种方法包括学习各种预测因素,所有预测因素都可以解释培训数据。该信息可用于根据指标的分歧来估算给定新观察的实例的认知不确定性。对检测OOD的能力的评估和认证需要指定可能在部署中发生的实例,但没有可用的预测。为了重点关注回归任务,我们为此OOD分布选择了一个简单而有见地的模型,并对各种方法区分OOD样品与数据的能力进行了经验评估。此外,我们展示的证据表明,各种参数可能无法转化为多样的预测因子。基于OOD分布的选择,我们提出了一种基于功能空间中最近邻居对预测变量的分布的熵的新方法。这导致了一个变异目标,该目标与生成神经网络给出的分布家族相结合,系统地产生了多种预测因子,提供了一种可靠的检测OOD样品的方法。

It is crucial to detect when an instance lies downright too far from the training samples for the machine learning model to be trusted, a challenge known as out-of-distribution (OOD) detection. For neural networks, one approach to this task consists of learning a diversity of predictors that all can explain the training data. This information can be used to estimate the epistemic uncertainty at a given newly observed instance in terms of a measure of the disagreement of the predictions. Evaluation and certification of the ability of a method to detect OOD require specifying instances which are likely to occur in deployment yet on which no prediction is available. Focusing on regression tasks, we choose a simple yet insightful model for this OOD distribution and conduct an empirical evaluation of the ability of various methods to discriminate OOD samples from the data. Moreover, we exhibit evidence that a diversity of parameters may fail to translate to a diversity of predictors. Based on the choice of an OOD distribution, we propose a new way of estimating the entropy of a distribution on predictors based on nearest neighbors in function space. This leads to a variational objective which, combined with the family of distributions given by a generative neural network, systematically produces a diversity of predictors that provides a robust way to detect OOD samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源