论文标题

帕伦多的同构悖论

Parrondo's paradox for homeomorphisms

论文作者

Gasull, Armengol, Hernández-Corbato, Luis, del Portal, Francisco R. Ruiz

论文摘要

我们构建了两个平面同构$ f $和$ g $,该原点是全球渐近稳定的固定点,而对于$ f \ circ g $和$ g \ circ f $,原点是全球驱虫者。此外,原点仍然是由$ f $和$ g $生成的迭代功能系统的全局驱虫器,其中每个地图都以一定的概率出现。这种平面构建也扩展到大于2的任何维度,并首次证明了帕伦多在奇数上的动态悖论的出现。

We construct two planar homeomorphisms $f$ and $g$ for which the origin is a globally asymptotically stable fixed point whereas for $f \circ g$ and $g \circ f$ the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by $f$ and $g$ where each of the maps appears with a certain probability. This planar construction is also extended to any dimension greater than 2 and proves for first time the appearance of the Parrondo's dynamical paradox in odd dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源