论文标题
XDM:改善推荐系统的未亮点用户行为的顺序深度匹配
XDM: Improving Sequential Deep Matching with Unclicked User Behaviors for Recommender System
论文作者
论文摘要
基于深度学习的顺序推荐系统最近引起了学术界和行业的越来越多的关注。用于建议的大多数基于工业嵌入的检索(EBR)系统与连续推荐人共享类似的想法。其中,如何全面捕获顺序用户兴趣是一个基本问题。但是,大多数现有的顺序推荐模型将输入单击或购买的行为序列从用户项目交互中采用。这导致了不可思议的用户表示和亚最佳模型性能,因为它们忽略了完整的用户行为曝光数据,即,用户留下了深刻的印象。在这项工作中,我们尝试使用新的学习方法来整合和建模这些未亮的项目序列,以探索更好的顺序推荐技术。提出了一种有效的三重态度量学习算法,以适当地学习未完成项目的表示。我们的方法可以通过置信融合网络将我们的方法简单地与现有的顺序推荐模型集成,并进一步获得更好的用户表示。基于现实世界电子商务数据的离线实验结果证明了有效性并验证了在顺序建议中未删除项目的重要性。此外,我们将新模型(命名为XDM)部署到TAOBAO的推荐系统EBR中,表现优于已部署的上一代SDM。
Deep learning-based sequential recommender systems have recently attracted increasing attention from both academia and industry. Most of industrial Embedding-Based Retrieval (EBR) system for recommendation share the similar ideas with sequential recommenders. Among them, how to comprehensively capture sequential user interest is a fundamental problem. However, most existing sequential recommendation models take as input clicked or purchased behavior sequences from user-item interactions. This leads to incomprehensive user representation and sub-optimal model performance, since they ignore the complete user behavior exposure data, i.e., items impressed yet unclicked by users. In this work, we attempt to incorporate and model those unclicked item sequences using a new learning approach in order to explore better sequential recommendation technique. An efficient triplet metric learning algorithm is proposed to appropriately learn the representation of unclicked items. Our method can be simply integrated with existing sequential recommendation models by a confidence fusion network and further gain better user representation. The offline experimental results based on real-world E-commerce data demonstrate the effectiveness and verify the importance of unclicked items in sequential recommendation. Moreover we deploy our new model (named XDM) into EBR of recommender system at Taobao, outperforming the deployed previous generation SDM.