论文标题
不同的R-PPG:基于相机的心率估计多种主题皮肤和场景
Diverse R-PPG: Camera-Based Heart Rate Estimation for Diverse Subject Skin-Tones and Scenes
论文作者
论文摘要
心率(HR)是评估心肺不稳定的基本临床指标。由于有色社区受到19日-19和心血管疾病的影响不成比例,因此需要部署非接触式HR感应解决方案来进行高质量的远程医疗评估。从面部视频中估算人力资源的现有计算机视觉方法表现出对深色肤色的偏见性能。我们提出了一种新型的物理驱动算法,该算法在我们报告的数据中提高了深色肤色的性能。我们通过创建第一个以远程医疗为中心的远程生命体征数据集(重要数据集)来评估方法的性能。 432个视频(〜864分钟)在54位具有不同肤色的受试者中记录在现实的场景条件下,并具有相应的生命体征数据。我们的方法减少了由于照明变化,阴影和镜面的亮点而导致的错误,并赋予了跨色调的无偏性表现增长,为使医学包含的非接触性HR感应技术成为所有肤色患者的可行现实。
Heart rate (HR) is an essential clinical measure for the assessment of cardiorespiratory instability. Since communities of color are disproportionately affected by both COVID-19 and cardiovascular disease, there is a pressing need to deploy contactless HR sensing solutions for high-quality telemedicine evaluations. Existing computer vision methods that estimate HR from facial videos exhibit biased performance against dark skin tones. We present a novel physics-driven algorithm that boosts performance on darker skin tones in our reported data. We assess the performance of our method through the creation of the first telemedicine-focused remote vital signs dataset, the VITAL dataset. 432 videos (~864 minutes) of 54 subjects with diverse skin tones are recorded under realistic scene conditions with corresponding vital sign data. Our method reduces errors due to lighting changes, shadows, and specular highlights and imparts unbiased performance gains across skin tones, setting the stage for making medically inclusive non-contact HR sensing technologies a viable reality for patients of all skin tones.