论文标题

对标签平滑如何影响概括的研究

An Investigation of how Label Smoothing Affects Generalization

论文作者

Chen, Blair, Ziyin, Liu, Wang, Zihao, Liang, Paul Pu

论文摘要

已经假设标签平滑可以减少过度拟合并改善概括,目前的经验证据似乎证实了这些影响。但是,对这种经验改进的何时以及为什么会发生数学理解。在本文中,作为理解标签平滑为何有效的一步,我们提出了一个理论框架,以显示标签平滑如何控制概括损失时如何提供标签框架。特别是,我们表明,可以在标签噪声设置中精确地配制和识别该好处,其中训练被部分标记。我们的理论还预测了最佳标签平滑点的存在,这是标签平滑超参数的单个值,可最大程度地减少概括损失。进行广泛的实验以确认我们理论的预测。我们认为,我们的发现将有助于理论家和从业者了解标签平滑,并更好地将其应用于现实世界中的数据集。

It has been hypothesized that label smoothing can reduce overfitting and improve generalization, and current empirical evidence seems to corroborate these effects. However, there is a lack of mathematical understanding of when and why such empirical improvements occur. In this paper, as a step towards understanding why label smoothing is effective, we propose a theoretical framework to show how label smoothing provides in controlling the generalization loss. In particular, we show that this benefit can be precisely formulated and identified in the label noise setting, where the training is partially mislabeled. Our theory also predicts the existence of an optimal label smoothing point, a single value for the label smoothing hyperparameter that minimizes generalization loss. Extensive experiments are done to confirm the predictions of our theory. We believe that our findings will help both theoreticians and practitioners understand label smoothing, and better apply them to real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源