论文标题
彗星67p/churyumov-gerasimenko中属甲醇的prestellar晶粒表面起源
Prestellar grain-surface origins of deuterated methanol in comet 67P/Churyumov-Gerasimenko
论文作者
论文摘要
氘化的甲醇是最强大的窗户天文学家对构成含氘化分子的单个化学反应和其居住区域的物理化学史的作品之一。使用Rosetta-Rosina Data提出了彗星昏迷中的单次和DI剥离甲醇的首次检测。 D-甲醇(CH3OD和CH2DOH组合)和D2-甲醇(CH2DOD和CHD2OH组合)的丰度为5.5 +/- 0.46和0.00069 +/- 0.00014%,相对于正常甲醇。数据涵盖了0.71-6.6%范围内的甲醇脱位部分(d/h比),该数据范围为分子中D位置的统计校正,并在Rosina测量中包括统计错误传播。有人认为,彗星CH2DOH形成从CO氢化到CH3OH以及随后在CH3-R中的H-D取代反应。 CHD2OH可能是由脱氧甲醛产生的。同时,在存在氘代水冰的情况下,CH3OD和CH2DOD可以通过OH-R中的H-D交换反应形成。甲醇的形成和呈剥离的发生在与HDO的D2O形成时期相同的时期,在此之前发生的单含水,硫化氢和氨的形成。事实证明,彗星D-甲醇/甲醇比与Prestellar核心和低质量质体区域最紧密地一致。结果表明,彗星甲醇源于孕育我们的太阳系的天生感冒(10-20 K)prestelr核心。彗星挥发物分别反映了从云到核心到原始恒星的恒星形成的进化阶段。
Deuterated methanol is one of the most robust windows astrochemists have on the individual chemical reactions forming deuterium-bearing molecules and the physicochemical history of the regions where they reside. The first-time detection of mono- and di-deuterated methanol in a cometary coma is presented for comet 67P/Churyumov-Gerasimenko using Rosetta-ROSINA data. D-methanol (CH3OD and CH2DOH combined) and D2-methanol (CH2DOD and CHD2OH combined) have an abundance of 5.5+/-0.46 and 0.00069+/-0.00014 per cent relative to normal methanol. The data span a methanol deuteration fraction (D/H ratio) in the 0.71-6.6 per cent range, accounting for statistical corrections for the location of D in the molecule and including statistical error propagation in the ROSINA measurements. It is argued that cometary CH2DOH forms from CO hydrogenation to CH3OH and subsequent H-D substitution reactions in CH3-R. CHD2OH is likely produced from deuterated formaldehyde. Meanwhile, CH3OD and CH2DOD, could form via H-D exchange reactions in OH-R in the presence of deuterated water ice. Methanol formation and deuteration is argued to occur at the same epoch as D2O formation from HDO, with formation of mono-deuterated water, hydrogen sulfide, and ammonia occurring prior to that. The cometary D-methanol/methanol ratio is demonstrated to agree most closely with that in prestellar cores and low-mass protostellar regions. The results suggest that cometary methanol stems from the innate cold (10-20 K) prestellar core that birthed our Solar System. Cometary volatiles individually reflect the evolutionary phases of star formation from cloud to core to protostar.