论文标题
一堆纤维函子和坦纳卡的重建
Stacks of fiber functors and Tannaka's reconstruction
论文作者
论文摘要
给定了一个准混合类别类别,该类别是groupoids $ \ mathcal {x} $和一个单体子类别$ \ Mathcal {C} $的本地免费带状吊杆$ \ text {vext {vext {vext {vext}(\ mathcal {x})$ $ \ text {fib} _ {\ Mathcal {x},\ Mathcal {C}} $带有源$ \ Mathcal {C} $,配备了地图$ \ MATHCAL {p} _ {\ MATHCAL {C}}} \ COLON \ MATHCAL {X} \ to \ text {fib} _ {\ Mathcal {x {x},\ Mathcal $ \ MATHCAL {G} \ COLON \ MATHCAL {C} \ to \ text {vect}(\ text {fib} _ {\ Mathcal {x},\ Mathcal {c}})$。 如果$ \ MATHCAL {C} $ GERTATE $ \ text {qCoh}(\ Mathcal {x})$和$ \ Mathcal {x} $是带有准蛋白的FPQC堆栈$ \ MATHCAL {p} _ {\ MATHCAL {C}} \ COLON \ MATHCAL \ MATHCAL {X} \ to \ text {fib} _ {\ Mathcal {\ Mathcal {x},\ Mathcal {C}} $是Equivalence,如tannaka的ReconStine in y Is tainnaka reconsction in equivalence,格贝(Gerbe)在一个领域。通常,在$ \ Mathcal {C} $上的温和假设下,例如$ \ MATHCAL {C} = \ text {vect}(\ Mathcal {x})$,我们表明$ \ text {fib} _ {\ Mathcal {\ Mathcal {x},\ Mathcal {c}} $是与AFFINE DIAIGINAL和那个Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Imagem $ \ MATHCAL {g}(\ MATHCAL {C})$生成$ \ text {qCoh}(\ text {fib} _ {\ Mathcal {x},\ Mathcal {c}}})$。
Given a quasi-compact category fibered in groupoids $\mathcal{X}$ and a monoidal subcategory $\mathcal{C}$ of its category of locally free sheaves $\text{Vect}(\mathcal{X})$, we are going to introduce the stack of fiber functors $\text{Fib}_{\mathcal{X},\mathcal{C}}$ with source $\mathcal{C}$, which comes equipped with a map $\mathcal{P}_{\mathcal{C}}\colon\mathcal{X}\to\text{Fib}_{\mathcal{X},\mathcal{C}}$ and a functor $\mathcal{G}\colon\mathcal{C}\to\text{Vect}(\text{Fib}_{\mathcal{X},\mathcal{C}})$. If $\mathcal{C}$ generates $\text{QCoh}(\mathcal{X})$ and $\mathcal{X}$ is an fpqc stack with quasi-affine diagonal, we show that $\mathcal{P}_{\mathcal{C}}\colon\mathcal{X}\to\text{Fib}_{\mathcal{X},\mathcal{C}}$ is an equivalence, as it happens by Tannaka's reconstruction when $\mathcal{X}$ is an affine gerbe over a field. In general, under mild assumption on $\mathcal{C}$, e.g. $\mathcal{C}=\text{Vect}(\mathcal{X})$, we show that $\text{Fib}_{\mathcal{X},\mathcal{C}}$ is a quasi-compact fpqc stack with affine diagonal and that the image $\mathcal{G}(\mathcal{C})$ generates $\text{QCoh}(\text{Fib}_{\mathcal{X},\mathcal{C}})$.