论文标题

双曲动力学的共振

Resonances in hyperbolic dynamics

论文作者

Nonnenmacher, Stéphane

论文摘要

对界限外部障碍物的波传播的研究发现了拉普拉斯操作员的共振,它们是复杂的广义特征值,与估计波浪的长期渐近学有关。为了了解高频的分布,我们采用了半经典工具,这导致了考虑经典散射问题,尤其是一组被困的轨迹。我们专注于“混乱”情况,其中该集合是一个双曲线驱虫器,通常具有分形几何形状。在这种情况下,我们为共振计数得出了分形的韦尔上限。我们还获得了动力标准,以确保存在共振差距。我们还解决了捕获集是正常双曲线的亚策略的情况,这种情况可以有助于通过半经典方法分析(经典)Anosov触点的长时间属性。

The study of wave propagation outside bounded obstacles uncovers the existence of resonances for the Laplace operator, which are complex-valued generalized eigenvalues, relevant to estimate the long time asymptotics of the wave. In order to understand distribution of these resonances at high frequency, we employ semiclassical tools, which leads to considering the classical scattering problem, and in particular the set of trapped trajectories. We focus on "chaotic" situations, where this set is a hyperbolic repeller, generally with a fractal geometry. In this context, we derive fractal Weyl upper bounds for the resonance counting; we also obtain dynamical criteria ensuring the presence of a resonance gap. We also address situations where the trapped set is a normally hyperbolic submanifold, a case which can help analyzing the long time properties of (classical) Anosov contact flows through semiclassical methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源