论文标题

使用转移学习的基于改良的神经结构搜索(NAS)的物理化神经网络对异质多孔材料进行随机分析

Stochastic analysis of heterogeneous porous material with modified neural architecture search (NAS) based physics-informed neural networks using transfer learning

论文作者

Guo, Hongwei, Zhuang, Xiaoying, Rabczuk, Timon

论文摘要

在这项工作中,提出了一种基于修改的神经结构搜索方法(NAS)的深度学习模型,用于在异质多孔材料中进行随机分析。首先采用基于随机光谱表示的蒙特卡洛方法来构建一个随机模型,以模拟通过多孔介质进行流动。为了解决随机地下水流问题的管理方程,我们在本文中使用转移学习建立了一个基于物理信息的神经网络(PINN)的修改后的NAS模型,该模型将能够拟合不同计算的不同部分微分方程(PDE)。采用的绩效估计策略是使用制造解决方案方法的错误估计模型构建的。进行灵敏度分析以获得PINNS模型的先验知识,并缩小搜索空间参数范围,并使用超参数优化算法进一步确定参数的值。此外,基于NAS的PINNS模型还节省了最有利的体系结构的权重和偏见,然后在微调过程中使用。发现使用高斯相关函数的对数传导场的性能要比指数相关案例好得多,指数相关案例更拟合了PINNS模型,并且基于修改的神经体系结构搜索的PINNS模型显示出在近似PDES的解决方案方面具有很大的潜力。此外,建立了三维随机流模型,为高度异质含水层中的地下水流量提供了基准。通过使用不同的制造解决方案在不同维度的数字示例中,基于NAS模型的深层搭配方法被验证为有效而准确。

In this work, a modified neural architecture search method (NAS) based physics-informed deep learning model is presented for stochastic analysis in heterogeneous porous material. Monte Carlo method based on a randomized spectral representation is first employed to construct a stochastic model for simulation of flow through porous media. To solve the governing equations for stochastic groundwater flow problem, we build a modified NAS model based on physics-informed neural networks (PINNs) with transfer learning in this paper that will be able to fit different partial differential equations (PDEs) with less calculation. The performance estimation strategies adopted is constructed from an error estimation model using the method of manufactured solutions. A sensitivity analysis is performed to obtain the prior knowledge of the PINNs model and narrow down the range of parameters for search space and use hyper-parameter optimization algorithms to further determine the values of the parameters. Further the NAS based PINNs model also saves the weights and biases of the most favorable architectures, then used in the fine-tuning process. It is found that the log-conductivity field using Gaussian correlation function will perform much better than exponential correlation case, which is more fitted to the PINNs model and the modified neural architecture search based PINNs model shows a great potential in approximating solutions to PDEs. Moreover, a three dimensional stochastic flow model is built to provide a benchmark to the simulation of groundwater flow in highly heterogeneous aquifers. The NAS model based deep collocation method is verified to be effective and accurate through numerical examples in different dimensions using different manufactured solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源