论文标题

魔术矩形,签名的魔术阵列和整数$λ$ - 折亲量heffter阵列

Magic rectangles, signed magic arrays and integer $λ$-fold relative Heffter arrays

论文作者

Morini, Fiorenza, Pellegrini, Marco Antonio

论文摘要

令$ m,n,s,k $为整数,以便$ 4 \ leq s \ leq n $,$ 4 \ leq k \ leq m $和$ ms = nk $。令$λ$为$ 2MS $的除数,让$ t $为$ \ frac {2ms}λ$的除数。在本文中,我们构建魔术矩形$ MR(m,n; s,k)$,签名魔术阵列$ sma(m,n; s,k)$和整数$λ$ - 倍相对相对heffter阵列$ {}^}^λh_t(m,n; s,s,k)$ s,k $ s,k $甚至是整数。特别是,我们证明所有$ m,n; s,k)$均为所有$ m,n,s,k $满足以前的假设。此外,我们证明存在一个$ MR(M,N; S,K)$和一个Integer $ {}^λH_T(m,n; s,k)$在以下情况下:$($(i)$ $ s,k \ equiv 0 \ equiv 0 \ pmod 4 $; $(ii)$ $ s \ equiv 2 \ pmod 4 $和$ k \ equiv 0 \ pmod 4 $; $(iii)$ $ s \ equiv 0 \ pmod 4 $和$ k \ equiv 2 \ pmod 4 $; $(iv)$ $ s,k \ equiv 2 \ pmod 4 $和$ m,n $均匀。

Let $m,n,s,k$ be integers such that $4\leq s\leq n$, $4\leq k \leq m$ and $ms=nk$. Let $λ$ be a divisor of $2ms$ and let $t$ be a divisor of $\frac{2ms}λ$. In this paper we construct magic rectangles $MR(m,n;s,k)$, signed magic arrays $SMA(m,n;s,k)$ and integer $λ$-fold relative Heffter arrays ${}^λH_t(m,n;s,k)$ where $s,k$ are even integers. In particular, we prove that there exists an $SMA(m,n;s,k)$ for all $m,n,s,k$ satisfying the previous hypotheses. Furthermore, we prove that there exist an $MR(m,n;s,k)$ and an integer ${}^λH_t(m,n;s,k)$ in each of the following cases: $(i)$ $s,k \equiv 0 \pmod 4$; $(ii)$ $s\equiv 2\pmod 4$ and $k\equiv 0 \pmod 4$; $(iii)$ $s\equiv 0\pmod 4$ and $k\equiv 2 \pmod 4$; $(iv)$ $s,k\equiv 2 \pmod 4$ and $m,n$ both even.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源