论文标题
在Leibniz代数的子代数晶格上
On the subalgebra lattice of a Leibniz algebra
论文作者
论文摘要
在本文中,我们开始研究Leibniz代数的亚代晶格。特别是,我们处理的是莱布尼兹代数的莱布尼斯代数,其子代数是模块化的,上半模块,下半模块,分布或双重原子。在多个晶格条件下,非莱布尼兹代数的一维亚代数较少,这一事实较少。
In this paper we begin to study the subalgebra lattice of a Leibniz algebra. In particular, we deal with Leibniz algebras whose subalgebra lattice is modular, upper semi-modular, lower semi-modular, distributive, or dually atomistic. The fact that a non-Lie Leibniz algebra has fewer one-dimensional subalgebras in general results in a number of lattice conditions being weaker than in the Lie case.