论文标题

学会优化一般TSP实例

Learning to Optimise General TSP Instances

论文作者

Sultana, Nasrin, Chan, Jeffrey, Qin, A. K., Sarwar, Tabinda

论文摘要

旅行推销员问题(TSP)是经典的组合优化问题。深度学习已成功地扩展到元学习,以前的解决工作有助于学习如何优化未来的优化实例。近年来,学习优化方法已显示出在解决TSP问题方面的成功。但是,它们集中在一种类型的TSP问题上,即点均匀分布在欧几里得空间中,并在其他嵌入空间(例如球形距离空间)以及点以不均匀方式分布的TSP实例中存在一般性的问题。学习优化的目的是训练一次并解决各种(TSP)问题。尽管有监督的学习方法已显示出比无监督的方法获得更多最佳解决方案,但它们确实需要生成培训数据并运行求解器来获得学习解决方案,这可能是耗时的,并且很难找到用于较难的TSP实例的合理解决方案。因此,本文介绍了一种新的基于学习的方法,以解决各种不同和常见的TSP问题,这些问题对更快的实例进行了培训,这些实例更快地训练并且更容易获得更好的解决方案。我们将这种方法命名为非欧盟tsp网络(NETSP-NET)。使用基准TSPLIB数据集和文献中使用的流行实例生成器在各种TSP实例上评估该方法。我们进行了广泛的实验,以表明我们在许多类型的实例和尺度上对训练中使用的实例的概括。

The Travelling Salesman Problem (TSP) is a classical combinatorial optimisation problem. Deep learning has been successfully extended to meta-learning, where previous solving efforts assist in learning how to optimise future optimisation instances. In recent years, learning to optimise approaches have shown success in solving TSP problems. However, they focus on one type of TSP problem, namely ones where the points are uniformly distributed in Euclidean spaces and have issues in generalising to other embedding spaces, e.g., spherical distance spaces, and to TSP instances where the points are distributed in a non-uniform manner. An aim of learning to optimise is to train once and solve across a broad spectrum of (TSP) problems. Although supervised learning approaches have shown to achieve more optimal solutions than unsupervised approaches, they do require the generation of training data and running a solver to obtain solutions to learn from, which can be time-consuming and difficult to find reasonable solutions for harder TSP instances. Hence this paper introduces a new learning-based approach to solve a variety of different and common TSP problems that are trained on easier instances which are faster to train and are easier to obtain better solutions. We name this approach the non-Euclidean TSP network (NETSP-Net). The approach is evaluated on various TSP instances using the benchmark TSPLIB dataset and popular instance generator used in the literature. We performed extensive experiments that indicate our approach generalises across many types of instances and scales to instances that are larger than what was used during training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源