论文标题

对假阳性的被动积极进取:修补已部署的恶意软件探测器

Getting Passive Aggressive About False Positives: Patching Deployed Malware Detectors

论文作者

Raff, Edward, Filar, Bobby, Holt, James

论文摘要

数十年来,误报(FPS)一直是反病毒系统(AV)系统极为重要的问题。随着越来越多的安全供应商转向机器学习,Alert Deluge遇到了临界质量,其中20%以上的警报导致FPS,在某些组织中,数量达到了所有警报的一半。这种增长导致了疲劳,沮丧,最糟糕的是,安全人员在SOC团队上的忽视。 FPS的基本原因是供应商必须构建一个全球系统来尝试并满足所有客户,但没有适应各个本地环境的方法。这导致其平台的表征令人发指,尽管在技术上是正确的,效率为99.9%。一旦这些系统部署了个体的特质,本地环境就会暴露导致FPS和不确定性的盲点。 我们提出了一种策略,以解决模型已经部署后,在生产中修复误报。长期以来,该行业一直试图用效率低下的这些问题来解决这些问题,有时,危险的允许列表技术和过多的模型再培训已不够。我们建议使用一种称为被动攻击性学习的技术将恶意软件检测模型更改为个人的环境,从而消除了误报,而无需共享任何客户敏感信息。我们将展示如何使用被动攻击性学习来解决生产环境中臭名昭著的误报集合,而不会损害恶意软件模型的准确性,从而将FP警报的总数平均降低了23倍。

False positives (FPs) have been an issue of extreme importance for anti-virus (AV) systems for decades. As more security vendors turn to machine learning, alert deluge has hit critical mass with over 20% of all alerts resulting in FPs and, in some organizations, the number reaches half of all alerts. This increase has resulted in fatigue, frustration, and, worst of all, neglect from security workers on SOC teams. A foundational cause for FPs is that vendors must build one global system to try and satisfy all customers, but have no method to adjust to individual local environments. This leads to outrageous, albeit technically correct, characterization of their platforms being 99.9% effective. Once these systems are deployed the idiosyncrasies of individual, local environments expose blind spots that lead to FPs and uncertainty. We propose a strategy for fixing false positives in production after a model has already been deployed. For too long the industry has tried to combat these problems with inefficient, and at times, dangerous allowlist techniques and excessive model retraining which is no longer enough. We propose using a technique called passive-aggressive learning to alter a malware detection model to an individual's environment, eliminating false positives without sharing any customer sensitive information. We will show how to use passive-aggressive learning to solve a collection of notoriously difficult false positives from a production environment without compromising the malware model's accuracy, reducing the total number of FP alerts by an average of 23x.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源