论文标题
脉冲星时正时阵列引力波检测的天体物理学里程碑
Astrophysics Milestones For Pulsar Timing Array Gravitational Wave Detection
论文作者
论文摘要
Nanograv的合作报告了在其12.5-yr Pulsar定时阵列数据集中有一个常见的随机过程的有力证据,在$ a _ {\ rm yr} = 1.92 = 1.92^{+0.75} _ {+0.75} _ { - 0.55} _ { - 0.55} $ 15} $ 15} $ 10^= - - 15^{ - { - 15^{ - { - 15^ - - 15^ - - 15^ - - 15^ - { - 15^ - { - 15^ - - 15^{ - 15^ - { - 15^{ - 15^ - { - 15^{ - 15^ - { - 15}然而,尚不显着的证据证明了引力波信号的特征,这是四极的地狱\&唐斯的脉冲间相关性。我们仿真并扩展了纳米格拉夫数据集,注入了广泛的随机重力波背景(GWB)信号,这些信号涵盖了各种幅度和光谱形状,并量化了三个关键里程碑:(i)给定在12.5 YR分析中测量的幅度,我们期望与GWB进行累积,并在累积的同性恋中进行累积的证据,并累积了序列,并累积了互动的序列。 15--17年的数据,即12.5年数据集的2--5年; (ii)在初始检测中,我们预计幂律应变频谱斜率的分数不确定性为$ 40 \%$ $,这足以区分超级质量的黑洞二进制起源的GWB与某些预测更多外来起源的某些模型;(iii)(iii)同样,允许GWB及时的undection the Modure of the Mevertion the On the Ofe $ 44 \ $ 44 \ $ the Off $ 44 \ $ the Off $ 44 \ $ the Off $ 44 \%\ y 44 \ first to Broughty of the Off $ 44 \ y 44 \ first to n44 the Offection。超大质黑洞二进制文件。此外,一旦达到20〜年数据,幂律模型与具有低频光谱失误的模型可以区分。即使我们的研究基于Nanograv数据,我们也得出了有关其他Pulsar-Timing Array数据集的概括的关系。最值得注意的是,通过将单个阵列的数据组合到国际Pulsar定时阵列中,所有这些里程碑都可以更早地达到。
The NANOGrav Collaboration reported strong Bayesian evidence for a common-spectrum stochastic process in its 12.5-yr pulsar timing array dataset, with median characteristic strain amplitude at periods of a year of $A_{\rm yr} = 1.92^{+0.75}_{-0.55} \times 10^{-15}$. However, evidence for the quadrupolar Hellings \& Downs interpulsar correlations, which are characteristic of gravitational wave signals, was not yet significant. We emulate and extend the NANOGrav dataset, injecting a wide range of stochastic gravitational wave background (GWB) signals that encompass a variety of amplitudes and spectral shapes, and quantify three key milestones: (I) Given the amplitude measured in the 12.5 yr analysis and assuming this signal is a GWB, we expect to accumulate robust evidence of an interpulsar-correlated GWB signal with 15--17 yrs of data, i.e., an additional 2--5 yrs from the 12.5 yr dataset; (II) At the initial detection, we expect a fractional uncertainty of $40\%$ on the power-law strain spectrum slope, which is sufficient to distinguish a GWB of supermassive black-hole binary origin from some models predicting more exotic origins;(III) Similarly, the measured GWB amplitude will have an uncertainty of $44\%$ upon initial detection, allowing us to arbitrate between some population models of supermassive black-hole binaries. In addition, power-law models are distinguishable from those having low-frequency spectral turnovers once 20~yrs of data are reached. Even though our study is based on the NANOGrav data, we also derive relations that allow for a generalization to other pulsar-timing array datasets. Most notably, by combining the data of individual arrays into the International Pulsar Timing Array, all of these milestones can be reached significantly earlier.