论文标题

脉冲星时正时阵列引力波检测的天体物理学里程碑

Astrophysics Milestones For Pulsar Timing Array Gravitational Wave Detection

论文作者

Pol, Nihan S., Taylor, Stephen R., Kelley, Luke Zoltan, Vigeland, Sarah J., Simon, Joseph, Chen, Siyuan, Arzoumanian, Zaven, Baker, Paul T., Bécsy, Bence, Brazier, Adam, Brook, Paul R., Burke-Spolaor, Sarah, Chatterjee, Shami, Cordes, James M., Cornish, Neil J., Crawford, Fronefield, Cromartie, H. Thankful, DeCesar, Megan E., Demorest, Paul B., Dolch, Timothy, Ferrara, Elizabeth C., Fiore, William, Fonseca, Emmanuel, Garver-Daniels, Nathan, Good, Deborah C., Hazboun, Jeffrey S., Jennings, Ross J., Jones, Megan L., Kaiser, Andrew R., Kaplan, David L., Key, Joey Shapiro, Lam, Michael T., Lazio, T. Joseph W., Luo, Jing, Lynch, Ryan S., Madison, Dustin R., McEwen, Alexander, McLaughlin, Maura A., Mingarelli, Chiara M. F., Ng, Cherry, Nice, David J., Pennucci, Timothy T., Ransom, Scott M., Ray, Paul S., Shapiro-Albert, Brent J., Siemens, Xavier, Stairs, Ingrid H., Stinebring, Daniel R., Swiggum, Joseph K., Vallisneri, Michele, Wahl, Haley, Witt, Caitlin A.

论文摘要

Nanograv的合作报告了在其12.5-yr Pulsar定时阵列数据集中有一个常见的随机过程的有力证据,在$ a _ {\ rm yr} = 1.92 = 1.92^{+0.75} _ {+0.75} _ { - 0.55} _ { - 0.55} $ 15} $ 15} $ 10^= - - 15^{ - { - 15^{ - { - 15^ - - 15^ - - 15^ - - 15^ - { - 15^ - { - 15^ - - 15^{ - 15^ - { - 15^{ - 15^ - { - 15^{ - 15^ - { - 15}然而,尚不显着的证据证明了引力波信号的特征,这是四极的地狱\&唐斯的脉冲间相关性。我们仿真并扩展了纳米格拉夫数据集,注入了广泛的随机重力波背景(GWB)信号,这些信号涵盖了各种幅度和光谱形状,并量化了三个关键里程碑:(i)给定在12.5 YR分析中测量的幅度,我们期望与GWB进行累积,并在累积的同性恋中进行累积的证据,并累积了序列,并累积了互动的序列。 15--17年的数据,即12.5年数据集的2--5年; (ii)在初始检测中,我们预计幂律应变频谱斜率的分数不确定性为$ 40 \%$ $,这足以区分超级质量的黑洞二进制起源的GWB与某些预测更多外来起源的某些模型;(iii)(iii)同样,允许GWB及时的undection the Modure of the Mevertion the On the Ofe $ 44 \ $ 44 \ $ the Off $ 44 \ $ the Off $ 44 \ $ the Off $ 44 \%\ y 44 \ first to Broughty of the Off $ 44 \ y 44 \ first to n44 the Offection。超大质黑洞二进制文件。此外,一旦达到20〜年数据,幂律模型与具有低频光谱失误的模型可以区分。即使我们的研究基于Nanograv数据,我们也得出了有关其他Pulsar-Timing Array数据集的概括的关系。最值得注意的是,通过将单个阵列的数据组合到国际Pulsar定时阵列中,所有这些里程碑都可以更早地达到。

The NANOGrav Collaboration reported strong Bayesian evidence for a common-spectrum stochastic process in its 12.5-yr pulsar timing array dataset, with median characteristic strain amplitude at periods of a year of $A_{\rm yr} = 1.92^{+0.75}_{-0.55} \times 10^{-15}$. However, evidence for the quadrupolar Hellings \& Downs interpulsar correlations, which are characteristic of gravitational wave signals, was not yet significant. We emulate and extend the NANOGrav dataset, injecting a wide range of stochastic gravitational wave background (GWB) signals that encompass a variety of amplitudes and spectral shapes, and quantify three key milestones: (I) Given the amplitude measured in the 12.5 yr analysis and assuming this signal is a GWB, we expect to accumulate robust evidence of an interpulsar-correlated GWB signal with 15--17 yrs of data, i.e., an additional 2--5 yrs from the 12.5 yr dataset; (II) At the initial detection, we expect a fractional uncertainty of $40\%$ on the power-law strain spectrum slope, which is sufficient to distinguish a GWB of supermassive black-hole binary origin from some models predicting more exotic origins;(III) Similarly, the measured GWB amplitude will have an uncertainty of $44\%$ upon initial detection, allowing us to arbitrate between some population models of supermassive black-hole binaries. In addition, power-law models are distinguishable from those having low-frequency spectral turnovers once 20~yrs of data are reached. Even though our study is based on the NANOGrav data, we also derive relations that allow for a generalization to other pulsar-timing array datasets. Most notably, by combining the data of individual arrays into the International Pulsar Timing Array, all of these milestones can be reached significantly earlier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源