论文标题

312避免有效的钩构和鸭单词减少

312-Avoiding Reduced Valid Hook Configurations and Duck Words

论文作者

Axelrod-Freed, Ilani

论文摘要

有效的钩构型是用于了解West的堆栈排序图以及非交通概率理论中的累积物的组合对象。我们在312个避免置换置换术上显示了有效的钩构型,并证明了Sankar的猜想。我们扩展到所有312个避开有效的钩构型和带有指定修改的3D-DYCK单词之间的两者。我们展示了如何用3K的3D单词的数量来计数这些,其中i y的数量完全没有X,即(K,i)duck单词,并使用这种关系来证明涉及312个避免有效挂钩配置的312个属性,包括Sankar的两个猜想。我们还表明(k,1)duck单词的数量由网球数的变体给出。

Valid hook configurations are combinatorial objects used to understand West's stack sorting map as well as cumulants in noncommutative probability theory. We show a bijection between reduced valid hook configurations on 312-avoiding permutations with the maximal allowed number of points and 3D-Dyck words, proving a conjecture of Sankar's. We extend to a bijection between all 312-avoiding reduced valid hook configurations and 3D-Dyck words with specified modifications. We show how these can be counted in terms of the number of 3D-Dyck words of length 3k in which exactly i Y's do not have an X immediately before them, the (k,i)-Duck words, and use this relationship to prove several properties about sums of 312-avoiding reduced valid hook configurations, including two more of Sankar's conjectures. We also show that the number of (k,1)-Duck words is given by a variant of the tennis ball numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源