论文标题
具有高度奇异性的非均匀双曲图的符号动力学
Symbolic dynamics for nonuniformly hyperbolic maps with singularities in high dimension
论文作者
论文摘要
我们为在较高尺寸的riemannian歧管上定义的不可变形和/或奇异的非均匀双曲系统构建了马尔可夫分区。设置的普遍性涵盖了到目前为止未得到处理的经典示例,例如封闭的歧管中的测地量流,多维台球地图和Viana地图,其中包括文献的所有最新结果。我们还提供大量应用。
We construct Markov partitions for non-invertible and/or singular nonuniformly hyperbolic systems defined on higher dimensional Riemannian manifolds. The generality of the setup covers classical examples not treated so far, such as geodesic flows in closed manifolds, multidimensional billiard maps, and Viana maps, and includes all the recent results of the literature. We also provide a wealth of applications.